These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancing methane production from dewatered waste activated sludge through alkaline and photocatalytic pretreatment. Author: Maryam A, Zeshan, Badshah M, Sabeeh M, Khan SJ. Journal: Bioresour Technol; 2021 Apr; 325():124677. PubMed ID: 33493745. Abstract: Waste activated sludge generated from wastewater treatment plants makes an abundant source of biomass. Its effective utilization through anaerobic digestion (AD) requires pretreatment to disintegrate the sludge matrix and increase organic matter availability. In this study, dewatered waste activated sludge (DWAS) was subjected to alkaline, photocatalytic, and alkaline-photocatalytic pretreatment for its disintegration and subsequent methane production using different concentrations of sodium hydroxide and titania nanoparticles. Individual pretreatment resulted in maximum disintegration degree (DDsCOD) of 11.3 and 5.2% at 0.8% NaOH and 0.6 gTiO2/L, respectively. Alkaline-photocatalytic pretreatment yielded 37% DDsCOD at 0.8% NaOH-0.4 g/L TiO2. As compared to control, AD at 0.4% NaOH and 0.5 g/L TiO2 pretreatments yielded maximum methane, which was 50.4 and 32.6% higher. Similarly, alkaline-photocatalytic pretreatment at 0.4% NaOH-0.5 g/L TiO2 yielded methane as 462 N mL/g VS, which was 71.1% higher. Modified Gompertz model fitted the methane yield data well.[Abstract] [Full Text] [Related] [New Search]