These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sensitive and reliable identification of fentanyl citrate in urine and serum using chloride ion-treated paper-based SERS substrate.
    Author: Han S, Zhang C, Lin S, Sha X, Hasi W.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr 15; 251():119463. PubMed ID: 33493937.
    Abstract:
    Recently, the phenomenon of fentanyls overdose leading to death is emerging in an endless stream. There is an urgent requirement to quickly identify fentanyl content in body fluids for medical and judicial purposes. With this in mind, we present a paper-based SERS substrate decorated with uniform gold nanospheres treated by chloride ion for the detection of fentanyl citrate in urine and serum. In particular, the paper-based SERS sensor was prepared by liquid/liquid self-assembly technique and chloride ion was introduced to clean and modify the substrate surface, which improved the sensitivity of the solid substrate with an enhancement factor (EF) as high as 1.64 × 105. Moreover, the uniformity of each paper-based substrate and the repeatability on different batches of substrate were excellent, and there was no obvious change in the intensity response of Raman spectra within a month. As a result, the quantitative analysis of fentanyl citrate in artificial urine and rat serum were performed based on the modified paper-based substrate with the limit of detection as low as 0.59 μg/mL and 2.78 μg/mL, respectively. Both the concentrations of the two biological samples with the Raman signal intensity were linearly plotted and the recovery of the spiked samples with different concentrations was collected to verify the accuracy of the quantitative curves. All the results suggest that this work makes SERS method available for the rapid identification and quantitative analysis of illicit drug in the real biological samples.
    [Abstract] [Full Text] [Related] [New Search]