These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Imaging and dosimetric characteristics of 67 Cu.
    Author: Merrick MJ, Rotsch DA, Tiwari A, Nolen J, Brossard T, Song J, Wadas TJ, Sunderland JJ, Graves SA.
    Journal: Phys Med Biol; 2021 Jan 26; 66(3):035002. PubMed ID: 33496267.
    Abstract:
    In recent years the use of beta-emitting radiopharmaceuticals for cancer therapy has expanded rapidly following development of therapeutics for neuroendocrine tumors, prostate cancer, and other oncologic malignancies. One emerging beta-emitting radioisotope of interest for therapy is 67Cu (t1/2: 2.6 d) due to its chemical equivalency with the widely-established positron-emitting isotope 64Cu (t1/2: 12.7 h). In this work we evaluate both the imaging and dosimetric characteristics of 67Cu, as well as producing the first report of SPECT/CT imaging using 67Cu. To this end, 67Cu was produced by photon-induced reactions on isotopically-enriched 68Zn at the Low-Energy Accelerator Facility (LEAF) of Argonne National Laboratory, followed by bulk separation of metallic 68Zn by sublimation and radiochemical purification by column chromatography. Gamma spectrometry was performed by efficiency-calibrated high-purity germanium (HPGe) analysis to verify absolute activity calibration and establish radionuclidic purity. Absolute activity measurements corroborated manufacturer-recommended dose-calibrator settings and no radionuclidic impurities were observed. Using the Clinical Trials Network anthropomorphic chest phantom, SPECT/CT images were acquired. Medium energy (ME) SPECT collimation was found to provide the best image quality from the primary 185 keV gamma emission of 67Cu. Reconstructed images of 67Cu were similar in quality to images acquired using 177Lu. Recovery coefficients were calculated and compared against quantitative images of 99mTc, 177Lu, and 64Cu within the same anthropomorphic chest phantom. Production and clinical imaging of 67Cu appears feasible, and future studies investigating the therapeutic efficacy of 67Cu-based radiopharmaceuticals are warranted.
    [Abstract] [Full Text] [Related] [New Search]