These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Skeletal 212Pb retention following 224Ra injection: extrapolation of animal data to adult humans. Author: Schlenker RA. Journal: Health Phys; 1988 Apr; 54(4):383-96. PubMed ID: 3350659. Abstract: Two methods of interspecies extrapolation, one based on a correlation of skeletal 212Pb/224Ra with body weight, the other based on the mechanistic relationship between skeletal 212Pb/224Ra and reciprocal bone surface-to-volume ratio, lead to the conclusion that the retention of 212Pb in the adult human skeleton is approximately complete a few days after injection. The correlation-based method gives most probable values for 212Pb/224Ra of 1.0 and 1.1 at 2 d and 7 d after injection, compared with values of 1.05 and 1.27 expected at these same times if the retention of 212Pb were complete from the time of injection and if no 212Pb were in the injection solution. The range of values corresponding to one geometric standard error on either side of the most probable value is 0.87 to 1.21 at 2 d post-injection. With the method based on the reciprocal bone surface-to-volume ratio, the best estimate of 212Pb/224Ra at 2 d after injection is 0.88, equal to the value observed in young adult beagles. An alternative interpretation of the results of this latter method leads to the conclusion that retention is complete, with 212Pb/224Ra equal to 1.0 for a 212Pb-free injection solution and 1.1 for a solution containing 212Pb in secular equilibrium with 224Ra. This work, which uses 224Ra daughter product retention data from mice, rats and dogs following 224Ra injection, provides a scientific foundation for retention assumptions made in the calculation of mean skeletal dose for adult humans. There now appear to be few uncertainties in these latter dose values, stemming from inaccurate retention assumptions; but substantial uncertainties remain in the mean skeletal dose values for juveniles and in the endosteal tissue doses regardless of age. Risk coefficients such as those in the BEIR III report that give the lifetime probability of bone tumor induction per unit mean skeletal dose may be correct for adult humans but are probably too low for juveniles due to overestimation of juvenile dose. BEIR III risk coefficients that give tumor induction probability per unit endosteal tissue dose may be substantially too small, regardless of age, due to overestimation of endosteal dose.[Abstract] [Full Text] [Related] [New Search]