These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy.
    Author: Ji Y, Liang L, Bao X, Hou G.
    Journal: Solid State Nucl Magn Reson; 2021 Apr; 112():101711. PubMed ID: 33508579.
    Abstract:
    With the recent advances in NMR hardware and probe design technology, magic-angle spinning (MAS) rates over 100 ​kHz are accessible now, even on commercial solid NMR probes. Under such fast MAS conditions, excellent spectral resolution has been achieved by efficient suppression of anisotropic interactions, which also opens an avenue to the proton-detected NMR experiments in solids. Numerous methods have been developed to take full advantage of fast MAS during the last decades. Among them, dipolar recoupling techniques under fast MAS play vital roles in the determination of the molecular structure and dynamics, and are also key elements in multi-dimensional correlation NMR experiments. Herein, we review the dipolar recoupling techniques, especially those developed in the past two decades for fast-to-ultrafast MAS conditions. A major focus for our discussion is the ratio of RF field strength (in frequency) to MAS frequency, ν1r, in different pulse sequences, which determines whether these dipolar recoupling techniques are suitable for NMR experiments under fast MAS conditions. Systematic comparisons are made among both heteronuclear and homonuclear dipolar recoupling schemes. In addition, the schemes developed specially for proton-detection NMR experiments under ultrafast MAS conditions are highlighted as well.
    [Abstract] [Full Text] [Related] [New Search]