These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optical Hot Spot Generation by the Plasmonic Coupling of Au Nanoparticles in the Nanospaces of Mesoporous Titanium(IV) Oxide. Author: Akita A, Fujishima M, Tada H. Journal: Langmuir; 2021 Feb 09; 37(5):1838-1842. PubMed ID: 33513306. Abstract: An in situ reduction technique consisting of chemisorption of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) and subsequent reaction with HAuCl4 has been developed for depositing Au nanoparticles (NPs) uniformly in the depth direction of a mesoporous TiO2 nanocrystalline film (Au/TMCTS/mp-TiO2). The TMCTS monolayer is further converted into silicon oxide by heating in the air (Au/SiOx/mp-TiO2). In the absorption spectra of Au/SiOx/mp-TiO2 prepared at varying HAuCl4 concentrations (C), the localized surface plasmon resonance (LSPR) band of Au NPs significantly broadens C ≈ 1.22 mM at 546 nm to be split into two peaks around 500 and 700 nm at C ≥ 2.43 mM, whereas such a phenomenon is not observed for the usual Au NP-loaded TiO2 particles. Three-dimensional-finite difference time domain simulations showed that the unique optical property of Au/SiOx/mp-TiO2 stems from the effective LSPR coupling of very close Au NPs and partial fusions in the nanospaces of mp-TiO2. Further, the optical hot spots in Au/TMCTS/mp-TiO2 as well as Au/SiOx/mp-TiO2 generate an intense local electric field giving increase to a great enhancement of the absorption in the infrared spectrum of the TMCTS monolayer on mp-TiO2.[Abstract] [Full Text] [Related] [New Search]