These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The antitumor function of tumor necrosis factor (TNF), I. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity.
    Author: Havell EA, Fiers W, North RJ.
    Journal: J Exp Med; 1988 Mar 01; 167(3):1067-85. PubMed ID: 3351434.
    Abstract:
    The ability of murine recombinant tumor necrosis factor (rTNF) and natural TNF in tumor-necrotizing serum (TNS) to cause regression of the SA1 sarcoma was investigated. We found that to cause regression of a 9-d SA1 sarcoma, near lethal quantities of rTNF and TNS had to be given to the host. However, even at these highly toxic doses, rTNF was not reliable at causing complete tumor regression. On the other hand, both types of TNF were reliable at causing a tumor hemorrhagic reaction that resulted in the destruction of greater than 75% of the tumor's center in 24 h. The TNF-induced hemorrhagic reaction involved the development of numerous petechial hemorrhages in the tumor's vascular bed, which apparently resulted from destruction of the tumor's blood vessels. It was possible to follow the development of the hemorrhagic reaction against time after giving rTNF or TNS by measuring the intratumor extravasation of 51Cr-labeled syngeneic red cells. According to this method, TNF-induced intratumor hemorrhaging was in progress within 1 h of giving TNF and continued for about a 6-h period. However, the hemorrhagic reaction was greatly reduced and complete regression of the rim of the living tumor tissue that survived hemorrhagic necrosis failed to occur, if SA1 sarcoma was growing in T cell-deficient (TXB) mice. This indicates that the TNF-induced hemorrhagic reaction is partly dependent, and the tumor regression that follows is completely dependent on host immunocompetence. This suggests in turn, that rTNF does not directly destroy SA1 tumor cells in vivo, even though it was shown that it can destroy SA1 tumor cells in vitro. This interpretation is supported by the additional findings that rTNF was no more therapeutic against a 3-d (3-mm) SA1 than against a 9-d (8-mm) SA1, and was no more therapeutic when injected directly into the tumor than when injected intravenously. Lastly it was possible to completely inhibit the ability of rTNF and TNS to cause tumor hemorrhagic necrosis and regression by infusing the host with a monospecific, polyvalent anti-rTNF antibody that neutralized the cytotoxic action of rTNF in vitro.
    [Abstract] [Full Text] [Related] [New Search]