These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of dietary energy levels on performance and carcass yield of 2 meat-type broiler lines housed in hot and cool ambient temperatures. Author: Maharjan P, Hilton KM, Mullenix G, Weil J, Beitia A, Suesuttajit N, Umberson C, Martinez DA, Caldas JV, Kalinowski A, Yacoubi N, Naranjo V, England JA, Coon CN. Journal: Poult Sci; 2021 Mar; 100(3):100885. PubMed ID: 33516475. Abstract: Two meat-type broiler lines, line A and line B were fed experimental diets from 22-42 d with objectives to determine the effects of dietary metabolizable energy (ME) levels on feed intake (FI), performance, body composition, and processing yield as affected by environmental grow-out temperatures. Two thousand fifty male chicks from line A and 2,050 male chicks from line B were reared in 90-floor pens, 45 chicks per pen utilizing primary breeder nutrition and husbandry guidelines for starter (1-10 d) and grower (11-21 d) phases. Experimental finisher diets consisted of 5 increasing levels of apparent nitrogen corrected ME (2,800, 2,925, 3,050, 3,175, and 3,300 kcal/kg set at 19.5% crude protein and 1.0% dLys at each level) to represent 80, 90, 100, 110, and 120% ME of Evonik AminoChick energy level giving 2 × 5 factorial design and were fed from 22-42 d. All other amino acid levels in diets were formulated to a fixed ratio of dLys level. There were nine replicate pens for each diet and each line. The experiment was conducted twice-once in hot season (barn averages: 77.55 ˚F and 86.04% RH) and another in cool season (barn averages: 69.91 ˚F and 63.98% RH) of the year. Results showed that FI and feed conversion ratios (FCR) decreased (P < 0.05) linearly (R2 = 0.9) by 61.25 g and 0.073 units for every 10% increase in dietary ME for combined analysis of lines and seasons. The % fat mass of total body mass increased by 0.57%, whereas % protein mass decreased by 0.21% across ME levels (R2 > 0.9). However, there was no difference (P > 0.05) in % weights (of live weight) for wings, breast filet, tenders, or leg quarters across ME levels for both lines except % fat pad that increased (P < 0.05) by 0.20% for each 10% increment in dietary ME level. Line B had higher cumulative FI, BW gain, % lean, and protein mass of body mass than line A in hot season (P < 0.05). Feed intake was not different between lines in cool season (P > 0.05), whereas higher BW and improved FCR were observed for line A. Line A had higher % fat mass in both seasons. In summary, performance and yield results as affected by dietary ME levels were line specific and were affected by grow-out seasons. The optimal dietary ME level for the ME range studied (2,800-3,000 kcal/kg) at a constant recommended amino acid level lies in determining the best performance and profitability indices by taking into account the grow-out production inputs and processing yield outputs.[Abstract] [Full Text] [Related] [New Search]