These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insecticide resistance and resistance mechanisms in the melon aphid, Aphis gossypii, in Shandong, China.
    Author: Wang ZJ, Liang CR, Shang ZY, Yu QT, Xue CB.
    Journal: Pestic Biochem Physiol; 2021 Feb; 172():104768. PubMed ID: 33518055.
    Abstract:
    The melon aphid, Aphis gossypii, is an important pest of vegetables. Insecticide resistance in A. gossypii has increased due to the frequent use of insecticides. We studied the levels and mechanisms of A. gossypii resistance to imidacloprid, acetamiprid and lambda-cyhalothrin here. The resistance levels of the three insecticides in 20 populations of A. gossypii varied. When compared to the susceptible strain (Lab-SS), there were two moderate resistance (MR) populations and nine low resistance (LR) populations to imidacloprid, respectively, two MR populations and two LR populations to acetamiprid, respectively, and, five MR populations and two LR populations to λ-cyhalothrin, respectively. Gene mutation detection in the MR level populations showed arginine to threonine substitution (R81T) in three populations and lysine to glutamine substitution (K264E) in the nicotinic acetylcholine receptor (nAChR) β1 subunit in one population, respectively. No valine to isoleucine substitution (V62I) was found in the nAChR β1 subunit in any of the tested populations. The leucine to phenylalanine substitution (L1014F) in sodium channel α subunit was found in five MR populations. The relative expression of the CYP6CY13 gene was significantly upregulated in the Daiyue and Shenxian populations. The CYP6CY14 gene was significantly upregulated in Daiyue, Dongchangfu, Shenxian, Mengyin and Anqiu populations. The CYP6CY19 gene was significantly upregulated in the Dongchangfu and Mengyin populations. The relative expressions of the esterase E4 or FE4 genes were significantly upregulated in most of the MR populations. These results provide insight into the current insecticide resistance of A. gossypii and may contribute to more effective resistance management strategies.
    [Abstract] [Full Text] [Related] [New Search]