These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Leaf Phosphorus Concentration Regulates the Development of Cluster Roots and Exudation of Carboxylates in Macadamia integrifolia. Author: Zhao X, Lyu Y, Jin K, Lambers H, Shen J. Journal: Front Plant Sci; 2020; 11():610591. PubMed ID: 33519868. Abstract: Phosphorus (P) deficiency induces cluster-root formation and carboxylate exudation in most Proteaceae. However, how external P supply regulates these root traits in Macadamia integrifolia remains unclear. Macadamia plants were grown hydroponically with seven P levels to characterize biomass allocation, cluster-root development, and exudation of carboxylates and acid phosphatases. Plant biomass increased with increasing P supply, peaking at 5 μM P, was the same at 5-25 μM P, and declined at 50-100 μM P. Leaf P concentration increased with increasing P supply, but shoot biomass was positively correlated with leaf P concentration up to 0.7-0.8 mg P g-1 dry weight (DW), and declined with further increasing leaf P concentration. The number of cluster roots declined with increasing P supply, with a critical value of leaf P concentration at 0.7-0.8 mg P g-1 DW. We found a similar trend for carboxylate release, with a critical value of leaf P concentration at 0.5 mg g-1 DW, but the activity of acid phosphatases showed a gradually-decreasing trend with increasing P supply. Our results suggest that leaf P concentration regulates the development and functioning of cluster roots, with a critical P concentration of 0.5-0.8 mg g-1, above which macadamia growth is inhibited.[Abstract] [Full Text] [Related] [New Search]