These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The human c-fps/fes gene product expressed ectopically in rat fibroblasts is nontransforming and has restrained protein-tyrosine kinase activity. Author: Greer PA, Meckling-Hansen K, Pawson T. Journal: Mol Cell Biol; 1988 Feb; 8(2):578-87. PubMed ID: 3352601. Abstract: A 13-kilobase EcoRI genomic restriction fragment containing the human c-fps/fes proto-oncogene locus was expressed transiently in Cos-1 monkey cells and stably in Rat-2 fibroblasts. In both cases, human c-fps/fes directed synthesis of a 92-kilodalton protein-tyrosine kinase (p92c-fes) indistinguishable from a tyrosine kinase previously identified with anti-fps antiserum which is specifically expressed in human myeloid cells. Transfected Rat-2 cells containing approximately 50-fold more human p92c-fes than is found in human leukemic cells remained morphologically normal and failed to grow in soft agar. Synthesis of p92c-fes in this phenotypically normal line exceeded that of the P130gag-fps oncoprotein in a v-fps-transformed Rat-2 line. Despite this elevated expression, human p92c-fes induced no substantial increase in cellular phosphotyrosine and was not itself phosphorylated on tyrosine. In contrast, p92c-fes immunoprecipitated from these Rat-2 cells or expressed as an enzymatically active fragment in Escherichia coli from a c-fps/fes cDNA catalyzed tyrosine phosphorylation with an activity similar to that of v-fps/fes polypeptides. Thus, p92c-fes is not transforming when ectopically overexpressed in Rat-2 fibroblasts. This lack of transforming activity correlates with a restriction imposed on the kinase activity of the normal c-fps/fes product in vivo which is apparently lifted for v-fps/fes oncoproteins, suggesting that regulatory interactions within the host cell modify fps/fes protein function and normally restrain its oncogenic potential.[Abstract] [Full Text] [Related] [New Search]