These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-122-5p Mitigates Inflammation, Reactive Oxygen Species and SH-SY5Y Apoptosis by Targeting CPEB1 After Spinal Cord Injury Via the PI3K/AKT Signaling Pathway. Author: Wei Z, Liu J, Xie H, Wang B, Wu J, Zhu Z. Journal: Neurochem Res; 2021 Apr; 46(4):992-1005. PubMed ID: 33528808. Abstract: Spinal cord injury (SCI) is a threatening disease that lead to severe motor and sensory deficits. Previous research has revealed that miRNAs are involved in the pathogenesis of a variety of diseases. However, whether miR-122-5p was involved in SCI was rarely investigated. In our study, we intended to probe role of miR-122-5p in the regulation of inflammatory response, reactive oxygen species (ROS) and SH-SY5Y apoptosis. We found miR-122-5p was downregulated in SCI mouse model and LPS-induced SH-SY5Y cells. Moreover, miR-122-5p overexpression alleviated inflammatory response, ROS and SH-SY5Y apoptosis in SCI mice. In addition, miR-122-5p elevation also mitigated SCI in LPS-induced SH-SY5Y cells. Additionally, cytoplasmic polyadenylation element binding protein 1 (CPEB1) was verified to be a target of miR-122-5p. CPEB1 expression was upregulated in SCI mouse model and LPS-induced SH-SY5Y cells. CPEB1 expression was negatively related to miR-122-5p expression. Moreover, CPEB1 activated the PI3K/AKT signaling pathway in SH-SY5Y cells. Finally, CPEB1 elevation recovered the suppressive effect on inflammatory response, ROS and SH-SY5Y apoptosis in LPS-treated SH-SY5Y cells mediated by miR-122-5p upregulation and through the PI3K/AKT signaling pathway.[Abstract] [Full Text] [Related] [New Search]