These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Energetically Preferred Bilayered Coacervation of Oppositely Charged ZrHP Nanoplatelets. Author: Hwang J, Sung M, Seo B, Shin K, Lee JY, Park BJ, Kim JW. Journal: ACS Appl Mater Interfaces; 2021 Feb 17; 13(6):7664-7671. PubMed ID: 33533585. Abstract: A platform is introduced for bilayered coacervation of oppositely charged nanoplatelets (NPLs) at the oil-water interface. To this end, we synthesized two types of zirconium hydrogen phosphate (ZrHP) NPLs, cationically charged NPLs (CNPLs), and anionically charged NPLs (ANPLs) by conducting surface-initiated atom transfer radical polymerization. Taking advantage of the platelet geometry and controlled wettability, we demonstrated that ANPLs and CNPLs coacervate themselves to form a bilayered NPL membrane at the interface, which was directly confirmed by confocal laser scanning microscopy. Via theoretical consideration using the hit-and-miss Monte Carlo method, we determined that electrostatic attraction-driven coacervation of ANPLs and CNPLs at the interface shows a minimum attachment energy of ∼ -106kBT, which is comparable to the cases where NPLs charged with the same type of ions are attached. Finally, this unique and novel interfacial coacervation behavior allowed us to develop a pH-responsive smart Pickering emulsion system.[Abstract] [Full Text] [Related] [New Search]