These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel voltammetric tumor necrosis factor-alpha (TNF-α) immunosensor based on gold nanoparticles involved in thiol-functionalized multi-walled carbon nanotubes and bimetallic Ni/Cu-MOFs. Author: Yola ML, Atar N. Journal: Anal Bioanal Chem; 2021 Apr; 413(9):2481-2492. PubMed ID: 33544162. Abstract: TNF-α, as a pro-inflammatory cytokine, regulates some physiological and pathological courses. TNF-α level increases in some important diseases such as cancer, arthritis, and diabetes. In addition, it displays an important function in Alzheimer's and cardiovascular diseases. Herein, a novel, sensitive, and selective voltammetric TNF-α immunosensor was prepared by using gold nanoparticles involved in thiol-functionalized multi-walled carbon nanotubes (AuNPs/S-MWCNTs) as sensor platform and bimetallic Ni/Cu-MOFs as sensor amplification. Firstly, the sensor platform was developed on glassy carbon electrode (GCE) surface by using mixture of thiol-functionalized MWCNTs (S-MWCNTs) and AuNPs. Then, capture TNF-α antibodies were conjugated to sensor platform by amino-gold affinity. After capture TNF-α antibodies' immobilization, a new-type voltammetric TNF-α immunosensor was developed by immune reaction between AuNPs/S-MWCNTs immobilized with primer TNF-α antibodies and bimetallic Ni/Cu-MOFs conjugated with seconder TNF-α antibodies. The prepared TNF-α immunosensor was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) method, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), thermogravimetric analysis, Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). A linearity range of 0.01-1.0 pg mL-1 and a low detection limit of 2.00 fg mL-1 were also obtained for analytical applications.[Abstract] [Full Text] [Related] [New Search]