These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Green fabrication of Cu/rGO decorated SWCNT buckypaper as a flexible electrode for glucose detection.
    Author: Zhu T, Wang X, Chang W, Zhang Y, Maruyama T, Luo L, Zhao X.
    Journal: Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111757. PubMed ID: 33545898.
    Abstract:
    As a paper-like membrane composed of single-walled carbon nanotube (SWCNT), buckypaper possesses high conductivity, ideal flexibility, large surface area, great thermal/chemical stability and biocompatibility, which has manifested its potential as an alternative support material. However, due to the lack of defects, high quality SWCNT synthesized by arc-discharge method is difficult to be modified with metal nanoparticles for electro-catalysis. In this paper, a novel green strategy has been developed to fabricate SWCNT buckypaper decorated with Cu/reduced graphene oxide (Cu/rGO-BP) for the first time, in which graphene oxide functions as the intermediate between SWCNT and Cu nanoparticles. The fabricated Cu/rGO-BP was applied as a flexible electrode for electrochemical glucose detection. The electrode exhibited excellent electro-catalytic activity for glucose oxidation. The sensor based on Cu/rGO-BP performed a high upper limit of linear range (25 mM), which is close to commercial glucose sensors. The proposed strategy for Cu/rGO-BP fabrication can be extended to modify buckypaper with other metal or metal oxide nanoparticles, and thus opens an innovative route to potential practical applications of flexible buckypaper in wearable bioelectronics.
    [Abstract] [Full Text] [Related] [New Search]