These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scalable characterization of the PAM requirements of CRISPR-Cas enzymes using HT-PAMDA. Author: Walton RT, Hsu JY, Joung JK, Kleinstiver BP. Journal: Nat Protoc; 2021 Mar; 16(3):1511-1547. PubMed ID: 33547443. Abstract: The continued expansion of the genome-editing toolbox necessitates methods to characterize important properties of CRISPR-Cas enzymes. One such property is the requirement for Cas proteins to recognize a protospacer-adjacent motif (PAM) in DNA target sites. The high-throughput PAM determination assay (HT-PAMDA) is a method that enables scalable characterization of the PAM preferences of different Cas proteins. Here, we provide a step-by-step protocol for the method, discuss experimental design considerations, and highlight how the method can be used to profile naturally occurring CRISPR-Cas9 enzymes, engineered derivatives with improved properties, orthologs of different classes (e.g., Cas12a), and even different platforms (e.g., base editors). A distinguishing feature of HT-PAMDA is that the enzymes are expressed in a cell type or organism of interest (e.g., mammalian cells), permitting scalable characterization and comparison of hundreds of enzymes in a relevant setting. HT-PAMDA does not require specialized equipment or expertise and is cost effective for multiplexed characterization of many enzymes. The protocol enables comprehensive PAM characterization of dozens or hundreds of Cas enzymes in parallel in <2 weeks.[Abstract] [Full Text] [Related] [New Search]