These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lactic acid bacteria-derived α-glucans: From enzymatic synthesis to miscellaneous applications. Author: Chen Z, Ni D, Zhang W, Stressler T, Mu W. Journal: Biotechnol Adv; 2021; 47():107708. PubMed ID: 33549610. Abstract: Lactic acid bacteria (LAB) are capable of producing a variety of exopolysaccharide α-glucans, such as dextran, mutan, reuteran, and alternan. Their structural diversity allows LAB-derived α-glucans to hold vast commercial value and application potential in the food, cosmetic, medical, and biotechnology fields, garnering much attention in recent years. Glycoside Hydrolase 70 family (GH70) enzymes are efficient tools for the biosynthesis of α-glucans with various sizes, linkage compositions, and degrees of branching, using renewable and low-cost sucrose and starch as substrates. To date, plenty of various LAB-derived GH70 glucansucrases (especially dextransucrase) have been biochemically characterized to synthesize α-glucans from sucrose with a variety of structural organizations. This review mainly aimed at the biotechnological synthesis of α-glucans using GH70 family enzymes and their diverse (potential) applications. The purification, structural analysis and physicochemical properties of α-glucan polysaccharides were reviewed in detail. Synchronously, some new insights and future perspectives of LAB-derived α-glucans enzymatic synthesis and applications were also discussed. To expand the range of applications, the physicochemical properties and bioactivities of LAB-derived α-glucans, other than dextran, should be further explored. Additionally, screening novel GH70 subfamily starch-acting enzymes is conducive to expanding the repertoire of α-glucans.[Abstract] [Full Text] [Related] [New Search]