These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: H7N9 pandemic preparedness: A large-scale production of a split inactivated vaccine.
    Author: Adami EA, Chavez Rico SL, Akamatsu MA, Miyaki C, Raw I, de Oliveira D, Comone P, Oliveira RDN, Sarno de Oliveira ML, Estima Abreu PA, Takano CY, Meros M, Soares-Schanoski A, Lee Ho P.
    Journal: Biochem Biophys Res Commun; 2021 Mar 19; 545():145-149. PubMed ID: 33550095.
    Abstract:
    In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 μg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.
    [Abstract] [Full Text] [Related] [New Search]