These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The impact of Drinking in the Dark (DID) procedural manipulations on ethanol intake in High Drinking in the Dark (HDID) mice. Author: Savarese AM, Ozburn AR, Barkley-Levenson AM, Metten P, Crabbe JC. Journal: Alcohol; 2021 Jun; 93():45-56. PubMed ID: 33556460. Abstract: The High Drinking in the Dark mouse lines (HDID-1 and HDID-2) were selectively bred to achieve high blood ethanol concentrations (BECs) in the Drinking in the Dark (DID) task, a widely used model of binge-like intake of 20% ethanol. There are several components that differentiate DID from other animal models of ethanol intake: time of day of testing, length of ethanol access, single-bottle access, and individual housing. Here, we sought to determine how some of these individual factors contribute to the high ethanol intake observed in HDID mice. HDID-1, HDID-2, and non-selected HS/NPT mice were tested in a series of DID experiments where one of the following factors was manipulated: length of ethanol access, fluid choice, number of ethanol bottles, and housing condition. We observed that 1) HDID mice achieve intoxicating BECs in DID, even when they are group-housed; 2) HDID mice continue to show elevated ethanol intake relative to HS/NPT mice during an extended access session, but this is most apparent during the first 4 h of access; and 3) offering a water choice during DID prevents elevated intake in the HDID-1 mice, but not necessarily in HDID-2 mice. Together, these results suggest that the lack of choice in the DID paradigm, together with the length of ethanol access, are important factors contributing to elevated ethanol intake in the HDID mice. These results further suggest important differences between the HDID lines in response to procedural manipulations of housing condition and ethanol bottle number in the DID paradigm, highlighting the distinct characteristics that each of these lines possess, despite being selectively bred for the same phenotype.[Abstract] [Full Text] [Related] [New Search]