These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of an Isotope Dilution UHPLC-QqQ-MS/MS-Based Method for Simultaneous Determination of Typical Advanced Glycation End Products and Acrylamide in Baked and Fried Foods.
    Author: Cheng W, Wang X, Zhang Z, Ma L, Liu G, Wang Q, Chen F, Cheng KW.
    Journal: J Agric Food Chem; 2021 Mar 03; 69(8):2611-2618. PubMed ID: 33560839.
    Abstract:
    In this work, a stable isotope dilution ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) method was developed and validated for simultaneous determination of Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), and acrylamide (AA) in baked and fried foods. Ground food samples were extracted with acetone followed by two parallel assays. In assay A, a cleanup procedure based on dispersive solid-phase extraction was conducted for AA, free CML, and CEL analysis using the supernatant. In assay B, a multistep process including reduction, protein precipitation, acid hydrolysis, and solid-phase extraction was conducted for bound CML and CEL analysis using precipitation. The developed method was validated in terms of linearity, sensitivity (limit of detection, LOD; limit of quantitation, LOQ), accuracy, and precision. The results showed that the method had a wide linear range (0.25-500 ng/mL for CML and CEL, 0.5-500 ng/mL for AA), low LOD and LOQ (0.47-0.94 and 1.52-1.91 μg/kg, respectively), and good linearity (R2 > 0.999). The recovery test on baby biscuit and French fries samples showed the recovery rates of 90.2-108.3% for CML, 89.0-106.1% for CEL, and 94.5-112.3% for AA with satisfactory precision (relative standard deviation (RSD) < 10%). Finally, the developed method was successfully applied to 11 baked and fried food samples, and total CML, CEL, and AA contents varied in the ranges of 4.07-35.88 mg/kg, 1.99-14.49 mg/kg, and 5.56-506.64 μg/kg, respectively. Therefore, the isotope dilution UHPLC-QqQ-MS/MS method developed herein is promising for routine analysis of CML, CEL, and AA in baked and fried foods.
    [Abstract] [Full Text] [Related] [New Search]