These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilization of α-amylase enzyme on a protein @metal-organic framework nanocomposite: A new strategy to develop the reusability and stability of the enzyme. Author: Atiroğlu V, Atiroğlu A, Özacar M. Journal: Food Chem; 2021 Jul 01; 349():129127. PubMed ID: 33561794. Abstract: Metal-organic structures (MOFs) have been designed for a wide range of applications due to their high porosity, large surface area, and flexibility. For the first time in this work, the successful immobilization of α-amylase is confirmed by the use of ZIF-8 as easy and good support. The morphology, functional groups, and chemical composition of the support and immobilized α-amylase were tested using different methods such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). The enzymatic activities of the immobilized olibanum-bovine serum albumin@zeolitic imidazolate frameworks nanocomposite (OLB/BSA@ZIF-8)-α-amylase were compared with the free one. The pH and thermal stability of the OLB/BSA@ZIF-8-α-amylase were significantly enhanced compared to the free enzyme. The OLB/BSA@ZIF-8-α-amylase displayed excellent long-term storage stability, which could protect more than 90% of the initial activity for 8 weeks. Besides, the OLB/BSA@ZIF-8-α-amylase had high reusability, which showed a high degree of activity (more than 81%) after 20 cycles. This is the first study that uses OLB/BSA@ZIF-8 nanocomposite as immobilizing support for the immobilization of α-amylase. Improved catalytic efficiency (Vmax/Km) values, reusability, and storage stability of immobilized α-amylase can make it suitable in industrial and biotechnological applications.[Abstract] [Full Text] [Related] [New Search]