These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-23b-3p functions as a positive factor for osteoporosis progression by targeting CCND1 in MC3T3-E1 cells. Author: Wang JZ, Zhao BH. Journal: In Vitro Cell Dev Biol Anim; 2021 Mar; 57(3):324-331. PubMed ID: 33564997. Abstract: MiRNAs have gained tremendous attention as studies have shown that miRNAs play important roles in osteoporosis (OP) progression. This study attempted to explore whether miR-23b-3p is involved in the pathogenesis of OP. We detected the miR-23b-3p and Cyclin D1 (CCND1) expressional patterns in the bone of patients with or without OP relying on the GEO database. β-Glycerophosphate disodium salt and L-ascorbic acid were utilized to stimulate differentiation of MC3T3-E1 cells. Cell proliferative, apoptotic abilities, and cell cycle distribution were determined by CCK-8 and flow cytometry experiments. TargetScan and dual-luciferase reporter analysis were employed to predict and verify the targets of miR-23b-3p. Western blot was implemented to detect the expression of CCND1, apoptosis-related proteins, and cell osteogenesis-related proteins. ALP activity of MC3T3-E1 cells was measured using ALP kit. MiR-23b-3p was increased in OP specimens. Gain-/loss-of-function analysis indicated that the miR-23b-3p inhibited proliferation and differentiation and promoted apoptosis of MC3T3-E1 cells. The levels of Bax and cleaved caspase-3 were increased while those of Bcl-2 were decreased. ALP activity was reduced, and the levels of ALP, Runx2, Osterix, and OPN were declined in MC3T3-E1 cells relative to control. Further analyses demonstrated that CCND1 was a putative target gene of miR-23b-3p. Moreover, knockdown of CCND1 could reverse the impacts of miR-23b-3p inhibitor in MC3T3-E1 cells. MiR-23b-3p functioned as an O-positive factor through regulating cell cycle, proliferation, apoptosis, and differentiation via targeting CCND1.[Abstract] [Full Text] [Related] [New Search]