These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ideonella sakaiensis, PETase, and MHETase: From identification of microbial PET degradation to enzyme characterization.
    Author: Yoshida S, Hiraga K, Taniguchi I, Oda K.
    Journal: Methods Enzymol; 2021; 648():187-205. PubMed ID: 33579403.
    Abstract:
    Few reports have described the biological degradation or utilization of poly(ethylene terephthalate) (PET) to support microbial growth. We screened environmental samples from a PET bottle recycling site and identified the microbial consortium no. 46, which degraded amorphous PET at ambient temperature; thereafter, we isolated the resident Ideonella sakaiensis 201-F6 strain responsible for the degradation. We further identified two hydrolytic enzymes from I. sakaiensis, PET hydrolase (PETase) and mono(2-hydroxyethyl) terephthalate hydrolase (MHETase), which synergistically converted PET into its monomeric building blocks. Here, we provide original methods of microbial screening and isolation of PET degrading microbe(s). These novel approaches can be adapted for exploring microorganisms that degrade PET and other plastics. Furthermore, our enzyme assay protocols to characterize PETase and MHETase can be applied to evaluate new enzymes that target PET and its hydrolysates.
    [Abstract] [Full Text] [Related] [New Search]