These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lipoxin A4 regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the Notch signaling pathway.
    Author: Li QQ, Ding DH, Wang XY, Sun YY, Wu J.
    Journal: Exp Neurol; 2021 May; 339():113645. PubMed ID: 33600815.
    Abstract:
    Microglia are rapidly activated after acute ischemic stroke, and the polarization of microglial is associated with the prognosis of acute ischemic stroke. Lipoxin A4 (LXA4), an anti-inflammatory agent, has a protective effect against ischemic stroke. However, the role of LXA4 on the polarization of microglial after acute ischemic stroke remains undetermined. We hypothesized that LXA4 may exert the neuroprotective effect though regulating the polarization of microglial. In this study, clinical features of acute ischemic stroke were simulated using a rat model of model of middle cerebral artery occlusion (MCAO) in vivo and the BV2 microglia oxygen-glucose deprivation/reoxygenation model (OGD/R) in vitro. The protective effects of LXA4 on cerebral ischemia-reperfusion injury were determined using TTC staining, HE staining, and TUNEL staining. The expression of targeted genes was assayed using quantitative real-time PCR (qRT-PCR), immunofluorescence, and western blot to investigated the regulation of LXA4 on microglia polarization after acute ischemic stroke. We found that LXA4 exerted protective effects on focal cerebral ischemia-reperfusion injury and reduced the expression of the pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, LXA4 inhibited the expression of Notch-1, Hes1, iNOS and CD32 all of which are associated with the differentiation into M1 microglia. By contrast, LXA4 upregulated the expression of Hes5, Arg-1 and CD206 all of which are associated with M2 phenotype in microglia. In addition, blocking the Notch signaling pathway with the inhibitor DAPT significantly mitigated the effect of LXA4 on microglia differentiation. These data suggest that LXA4 may regulate the polarization of microglia after cerebral ischemia-reperfusion injury through the Notch signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]