These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Clinical evaluation of an interoperable clinical decision-support system for the detection of systemic inflammatory response syndrome in critically ill children.
    Author: Wulff A, Montag S, Rübsamen N, Dziuba F, Marschollek M, Beerbaum P, Karch A, Jack T.
    Journal: BMC Med Inform Decis Mak; 2021 Feb 18; 21(1):62. PubMed ID: 33602206.
    Abstract:
    BACKGROUND: Systemic inflammatory response syndrome (SIRS) is defined as a non-specific inflammatory process in the absence of infection. SIRS increases susceptibility for organ dysfunction, and frequently affects the clinical outcome of affected patients. We evaluated a knowledge-based, interoperable clinical decision-support system (CDSS) for SIRS detection on a pediatric intensive care unit (PICU). METHODS: The CDSS developed retrieves routine data, previously transformed into an interoperable format, by using model-based queries and guideline- and knowledge-based rules. We evaluated the CDSS in a prospective diagnostic study from 08/2018-03/2019. 168 patients from a pediatric intensive care unit of a tertiary university hospital, aged 0 to 18 years, were assessed for SIRS by the CDSS and by physicians during clinical routine. Sensitivity and specificity (when compared to the reference standard) with 95% Wald confidence intervals (CI) were estimated on the level of patients and patient-days. RESULTS: Sensitivity and specificity was 91.7% (95% CI 85.5-95.4%) and 54.1% (95% CI 45.4-62.5%) on patient level, and 97.5% (95% CI 95.1-98.7%) and 91.5% (95% CI 89.3-93.3%) on the level of patient-days. Physicians' SIRS recognition during clinical routine was considerably less accurate (sensitivity of 62.0% (95% CI 56.8-66.9%)/specificity of 83.3% (95% CI 80.4-85.9%)) when measurd on the level of patient-days. Evaluation revealed valuable insights for the general design of the CDSS as well as specific rule modifications. Despite a lower than expected specificity, diagnostic accuracy was higher than the one in daily routine ratings, thus, demonstrating high potentials of using our CDSS to help to detect SIRS in clinical routine. CONCLUSIONS: We successfully evaluated an interoperable CDSS for SIRS detection in PICU. Our study demonstrated the general feasibility and potentials of the implemented algorithms but also some limitations. In the next step, the CDSS will be optimized to overcome these limitations and will be evaluated in a multi-center study. TRIAL REGISTRATION: NCT03661450 (ClinicalTrials.gov); registered September 7, 2018.
    [Abstract] [Full Text] [Related] [New Search]