These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermotropic behavior and electronmicroscopic structures of mixtures of gangliosides and dipalmitoylphosphatidylcholine.
    Author: Kojima H, Hanada-Yoshikawa K, Katagiri A, Tamai Y.
    Journal: J Biochem; 1988 Jan; 103(1):126-31. PubMed ID: 3360753.
    Abstract:
    The calorimetric properties and morphological structures of dispersed mixtures of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and highly purified human brain gangliosides, GM2, GM1, GD1a, GD1b, and GT1b, were studied using a high-sensitivity differential scanning calorimeter and an electron-microscope, as a function of the ganglioside molar fraction. No thermal phase transitions of pure gangliosides in aqueous dispersions could be detected. In the mixtures of DPPC and gangliosides, the gel to liquid crystalline phase transition occurred at a higher temperature than in pure DPPC dispersions and progressed over a wide temperature range. As increasing amounts of the pure ganglioside species were added to DPPC, the temperature for the main transition gradually increased. The phase transition progressed differently among different gangliosides/DPPC mixtures. The enthalpy values were found to decrease linearly as the number of sialic acid residues increased. Electron-microscopically the ganglioside/DPPC mixtures formed multilamellar structures at lower concentrations of the gangliosides, and the structures changed to cylindrical and spherical micelles as the ganglioside concentration was increased. The polysialoganglioside/DPPC mixtures showed the micellar form even at lower ganglioside concentrations, contrary to the case of the monosialoganglioside/DPPC mixtures. The morphological changes of gangliosides/DPPC mixtures corresponded with changes in the calorimetric properties. These results show that individual gangliosides have different physicochemical effects on model membranes, possibly because of the interaction of their negatively charged head groups.
    [Abstract] [Full Text] [Related] [New Search]