These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced heterogeneous photo-Fenton-like degradation of tetracycline over CuFeO2/biochar catalyst through accelerating electron transfer under visible light.
    Author: Xin S, Ma B, Liu G, Ma X, Zhang C, Ma X, Gao M, Xin Y.
    Journal: J Environ Manage; 2021 May 01; 285():112093. PubMed ID: 33607559.
    Abstract:
    The visible-light induced heterogeneous photo-Fenton-like (HPF-like) process is regarded as a promising technique for organic pollutants degradation due to its efficient utilization of solar energy and high H2O2 activation activity. This study prepared the CuFeO2/biochar catalysts via hydrothermal technique at no extra reductant and systematically investigated their band structure and photoelectric properties. The dispersed distribution of CuFeO2 particles in CuFeO2/biochar composites narrowed bandgap of CuFeO2 and promoted electron transport of CuFeO2. Compared with CuFeO2, the CuFeO2/biochar containing 1.0 g biochar in the preparation (CuFeO2/biochar-1.0) possessed higher carrier density and longer photoelectron lifetime, which is beneficial to higher catalytic performance. The apparent rate constant for tetracycline as target pollutant degradation by CuFeO2/biochar-1.0 was 2.0 times higher than that by CuFeO2. The acquired optimum conditions for tetracycline degradation were 220 mg L-1 CuFeO2/BC-1.0, 22 mM H2O2 and pH 6.4 using response surface methodology. The quenching experiments and ESR analysis revealed that OH was the predominant active species, and photoelectron and O2- were auxiliary species. The photoelectron could promote in-situ recycling of Cu2+ to Cu+ and Fe3+ to Fe2+, which significantly improved H2O2 activation by CuFeO2. The possible pathway of tetracycline was proposed according to intermediates identified by HPLC/MS. The toxicity analysis demonstrated that the overall toxicity of the identified intermediates was reduced in HPF-like system.
    [Abstract] [Full Text] [Related] [New Search]