These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Left intraventricular pressure gradient in hypertrophic cardiomyopathy patients receiving implantable cardioverter-defibrillators for primary prevention.
    Author: Yazaki K, Suzuki A, Shiga T, Minami Y, Arai K, Ashihara K, Shoda M, Hagiwara N.
    Journal: BMC Cardiovasc Disord; 2021 Feb 19; 21(1):106. PubMed ID: 33607967.
    Abstract:
    BACKGROUND: Conventional risk factors for sudden cardiac death (SCD) justify primary prevention through implantable cardioverter-defibrillator (ICD) implantation in hypertrophic cardiomyopathy (HCM) patients. However, the positive predictive values for these conventional SCD risk factors are low. Left ventricular outflow tract obstruction (LVOTO) and midventricular obstruction (MVO) are potential risk modifiers for SCD. The aims of this study were to evaluate whether an elevated intraventricular pressure gradient (IVPG), including LVOTO or MVO, is a potential risk modifier for SCD and ventricular arrhythmias requiring ICD interventions in addition to the conventional risk factors among HCM patients receiving ICDs for primary prevention. METHODS: We retrospectively studied 60 HCM patients who received ICDs for primary prevention. An elevated IVPG was defined as a peak instantaneous gradient ≥ 30 mmHg at rest, as detected by continuous-wave Doppler echocardiography. The main outcome was a composite of SCD and appropriate ICD interventions, which were defined as an antitachycardia pacing or shock therapy for ventricular tachycardia or fibrillation. The Cox proportional hazards model was used to assess the relationships between risk factors and the occurrence of SCD and appropriate ICD interventions. RESULTS: Thirty patients met the criteria of elevated IVPG (50%). During the median follow-up period of 66 months, 2 patients experienced SCD, and 10 patients received appropriate ICD interventions. Kaplan-Meier curves showed that the incidence of the main outcome was higher in patients with an IVPG ≥ 30 mmHg than in those without an IVPG ≥ 30 mmHg (log-rank P = 0.03). There were no differences in the main outcome between patients with LVOTO and patients with MVO. The combination of nonsustained ventricular tachycardia (NSVT) and IVPG ≥ 30 mmHg was found to significantly increase the risk of the main outcome (HR 6.31, 95% CI 1.36-29.25, P = 0.02). Five patients experienced ICD implant-related complications. CONCLUSIONS: Our findings showed that a baseline IVPG ≥ 30 mmHg was associated with an increased risk of experiencing SCD or appropriate ICD interventions among HCM patients who received ICDs for primary prevention. Combined with NSVT, which is a conventional risk factor, a baseline IVPG ≥ 30 mmHg may be a potential modifier of SCD risk in HCM patients.
    [Abstract] [Full Text] [Related] [New Search]