These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancing anammox resistance to low operating temperatures with the use of PVA gel beads.
    Author: Wang J, Liang J, Sun L, Shen J, He Z.
    Journal: Sci Total Environ; 2021 Jun 20; 774():144826. PubMed ID: 33610986.
    Abstract:
    Low temperatures, or a sudden decrease in operating temperature, can seriously inhibit anammox activity, it is, therefore, important to maintain anammox activities at a low temperature. In this study, the use of gel beads to enhance the resistance of anammox biomass to a low temperature was investigated. The performance of three reactors: R1 without gel beads; R2 with polyvinyl alcohol/chitosan (PVA/CS); R3 with PVA/CS/Fe, was studied and compared in a temperature transition from 35 to 8 °C. When the operating temperature was ≥25 °C, there was little difference in nitrogen removal among the three reactors. Decreasing the temperature to < 25 °C created obvious difference between R1 and R2/R3. R1 had a nitrogen removal efficiency (NRE) of 33.1 ± 25.3% at 10 °C, significantly lower than that of R2 (90.5 ± 2.5%) or R3 (87.7 ± 11.1%). Unclassified Candidatus Brocadiaceae was the dominant genus at 10 °C, with an abundance of 44.4, 56.5 and 58.7% in R1, R2 and R3, respectively. These differences were attributed to the use of gel beads, which promoted the granulation of both the non-immobilized sludge and the immobilized biomass, resulting in higher anammox activities in R2/R3. The non-immobilized sludge of R1 was dominated by small particles (<300 μm) at 10 °C, while in R2 and R3 large particles (1000-2000 μm) were the main components. Furthermore, the immobilized biomass on gel beads exhibited much higher anammox activity and maintained a relatively high level of nitrate reductase and nitrite reductase in response to the temperature decrease. The Fe2+/Fe3+ in the PVA/CS/Fe gel beads further promoted microbial aggregation and led to an improved performance in R3 compared to R2. The results of this study demonstrate an effective approach to increase anammox resistance at low operating temperatures.
    [Abstract] [Full Text] [Related] [New Search]