These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vanillic acid attenuates amyloid β1-40-induced long-term potentiation deficit in male rats: an in vivo investigation. Author: Ahmadi N, Mirazi N, Komaki A, Safari S, Hosseini A. Journal: Neurol Res; 2021 Jul; 43(7):562-569. PubMed ID: 33627050. Abstract: Objectives: Alzheimer disease (AD) is a neurodegenerative disorderliness that involves deductible progressive cognition function caused by amyloid-beta (Aβ) peptide accumulation in the interstitial space. The increase of Aβ stimulates all kinds of active oxygen and causes oxidative stress and apoptosis. In this investigation, we researched the neuroprotective impacts of vanillic acid (VA) on the Aβ-induced (Aβ1-40) long-term potentiation (LTP) of the hippocampus - a commonly probed synaptic plasticity model that happens at the same time as memory and learning - in the AD rats.Methods: Forty-five male Wistar rats were categorized into five groups (n = 8 rats/group, 200-220 g), and studied as control (standard diet), sham (vehicle), VA (50 mg/kg), Aβ and Aβ + VA (50 mg/kg) groups. In vivo electrophysiological recordings were implemented after the stereotaxic surgery to gauge the excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the dentate gyrus of the hippocampus. By the stimulation at high-frequency of the perforate pathway, long-term potentiation (LTP) was induced. To assess the plasma levels of malondialdehyde (MDA) and total thiol group (TTG), blood samples were garnered.Results: In the Aβ-injected rats, EPSP slope, and PS amplitude were significantly reduced after the induction of LTP. Thus, the findings demonstrate that VA decreases the impacts of Aβ on LTP; also, the treatments through VA neuroprotective against the negative effects of Aβ on the synaptic plasticity of the hippocampus can decrease the MDA levels and also increase the TTG levels significantly.Discussion: Therefore, based on this experiment on male rats, VA has neuroprotective effects and antioxidants benefits against the Aβ-mediated inhibition of long-term potentiation.[Abstract] [Full Text] [Related] [New Search]