These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mash-1 modified neural stem cells transplantation promotes neural stem cells differentiation into neurons to further improve locomotor functional recovery in spinal cord injury rats. Author: Deng M, Xie P, Chen Z, Zhou Y, Liu J, Ming J, Yang J. Journal: Gene; 2021 May 20; 781():145528. PubMed ID: 33631250. Abstract: BACKGROUND: Spinal cord injury (SCI) leads to severe motor and sensory dysfunctions. Neural stem cells (NSCs) transplantation therapy plays a positive role in functional recovery after SCI, but the effectiveness of this therapy is limited by inadequate differentiation ability of transplanted NSCs. Mammalian achaete-scute homologue-1 (Mash-1) has been reported to improve differentiation of NSCs. Thus, this study modified NSCs with Mash-1 to repair SCI. METHODS: NSCs isolated from rat embryo hippocampus were cultured and identified in vitro and further transfected with the lentiviral vectors (Lv-Mash-1). After establishing a SCI rat model, the rats were transplanted with Mash-1 modified NSCs, the histopathological changes of rat spinal cord were detected by hematoxylin-eosin (HE) staining, and the locomotor activity of rats was evaluated with the Basso, Beattie and Bresnahan (BBB) scale. The NSCs cultured in vitro or extracted from SCI rat spinal cord were identified by immunofluorescence (IF). Mash-1, β3-Tubulin, and NeuN expressions in those cells were determined by Western blotting and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). RESULTS: NSCs isolated from rat embryo hippocampus were Nestin- and NeuN-positive. NSC transplantation modified by Mash-1 increased BBB score of SCI rats and promoted recovery in lesion site of SCI rats. Mash-1 overexpression also promoted β3-Tubulin and NeuN expressions in NSCs cultured in vitro or extracted from spinal cord of SCI rats. CONCLUSION: Mash-1 overexpression promoted NSC differentiation into neurons, and further improved locomotor functional recovery of SCI rats.[Abstract] [Full Text] [Related] [New Search]