These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proficiency in homologous recombination repair is prerequisite for activation of G2-checkpoint at low radiation doses.
    Author: Soni A, Mladenov E, Iliakis G.
    Journal: DNA Repair (Amst); 2021 May; 101():103076. PubMed ID: 33640756.
    Abstract:
    Pathways of repair of DNA double strand breaks (DSBs) cooperate with DNA damage cell cycle checkpoints to safeguard genomic stability when cells are exposed to ionizing radiation (IR). It is widely accepted that checkpoints facilitate the function of DSB repair pathways. Whether DSB repair proficiency feeds back into checkpoint activation is less well investigated. Here, we study activation of the G2-checkpoint in cells deficient in homologous recombination repair (HRR) after exposure to low IR doses (∼1 Gy) in the G2-phase. We report that in the absence of functional HRR, activation of the G2-checkpoint is severely impaired. This response is specific for HRR, as cells deficient in classical non-homologous end joining (c-NHEJ) develop a similar or stronger G2-checkpoint than wild-type (WT) cells. Inhibition of ATM or ATR leaves largely unaffected residual G2-checkpoint in HRR-deficient cells, suggesting that the G2-checkpoint engagement of ATM/ATR is coupled to HRR. HRR-deficient cells show in G2-phase reduced DSB-end-resection, as compared to WT-cells or c-NHEJ mutants, confirming the reported link between resection and G2-checkpoint activation. Strikingly, at higher IR doses (≥4 Gy) HRR-deficient cells irradiated in G2-phase activate a weak but readily detectable ATM/ATR-dependent G2-checkpoint, whereas HRR-deficient cells irradiated in S-phase develop a stronger G2-checkpoint than WT-cells. We conclude that HRR and the ATM/ATR-dependent G2-checkpoint are closely intertwined in cells exposed to low IR-doses in G2-phase, where HRR dominates; they uncouple as HRR becomes suppressed at higher IR doses. Notably, this coupling is specific for cells irradiated in G2-phase, and cells irradiated in S-phase utilize a different mechanistic setup.
    [Abstract] [Full Text] [Related] [New Search]