These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Rapid determination of active components in Ginkgo biloba leaves by near infrared spectroscopy combined with genetic algorithm joint extreme learning machine]. Author: Ni HF, Si LT, Huang JP, Zan Q, Chen Y, Luan LJ, Wu YJ, Liu XS. Journal: Zhongguo Zhong Yao Za Zhi; 2021 Jan; 46(1):110-117. PubMed ID: 33645059. Abstract: Near-infrared spectroscopy(NIRS) combined with band screening method and modeling algorithm can be used to achieve the rapid and non-destructive detection of the traditional Chinese medicine(TCM) production process. This paper focused on the ginkgo leaf macroporous resin purification process, which is the key technology of Yinshen Tongluo Capsules, in order to achieve the rapid determination of quercetin, kaempferol and isorhamnetin in effluent. The abnormal spectrum was eliminated by Mahalanobis distance algorithm, and the data set was divided by the sample set partitioning method based on joint X-Y distances(SPXY). The key information bands were selected by synergy interval partial least squares(siPLS); based on that, competitive adaptive reweighted sampling(CARS), successive projections algorithm(SPA) and Monte Carlo uninformative variable(MC-UVE) were used to select wavelengths to obtain less but more critical variable data. With selected key variables as input, the quantitative analysis model was established by genetic algorithm joint extreme learning machine(GA-ELM) algorithm. The performance of the model was compared with that of partial least squares regression(PLSR). The results showed that the combination with siPLS-CARS-GA-ELM could achieve the optimal model performance with the minimum number of variables. The calibration set correlation coefficient R_c and the validation set correlation coefficient R_p of quercetin, kaempferol and isorhamnetin were all above 0.98. The root mean square error of calibration(RMSEC), the root mean square error of prediction(RMSEP) and the relative standard errors of prediction(RSEP) were 0.030 0, 0.029 2 and 8.88%, 0.041 4, 0.034 8 and 8.46%, 0.029 3, 0.027 1 and 10.10%, respectively. Compared with the PLSR me-thod, the performance of the GA-ELM model was greatly improved, which proved that NIRS combined with GA-ELM method has a great potential for rapid determination of effective components of TCM.[Abstract] [Full Text] [Related] [New Search]