These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sublytic and lytic effects of the zwitterionic bile derivative 3-((3-deoxycholamidopropyl)dimethylammonio)-1-propanesulfonate on phosphatidylcholine liposomes. Author: Partearroyo MA, Aranda FJ, Alonso A, Gómez-Fernández JC, Goñi FM. Journal: Arch Biochem Biophys; 1988 May 01; 262(2):585-91. PubMed ID: 3364981. Abstract: The effects of the zwitterionic bile derivative 3-((3-deoxycholamidopropyl)dimethyl-ammonio)-1-propanesulfonate (Chaps) on multilamellar phosphatidylcholine liposomes have been characterized. When the surfactant is added to preformed liposome suspensions, equilibrium is attained in less than 6 h. Fifty percent solubilization, as measured by analysis of lipid P in supernatants after solubilization, occurs at a 0.32 lipid/detergent mole ratio for a 1 mM phospholipid concentration. Fifty percent release of entrapped glucose occurs at the same detergent concentration, suggesting that, in this system, no increase in permeability occurs prior to solubilization. A linear relationship is found between phospholipid concentration and amount of surfactant producing 50% solubilization. No lytic effect of Chaps is seen below 2 mM surfactant, this being probably near the critical micellar concentration of the amphiphile under our conditions. In the sublytic range of detergent concentrations, Chaps binds the lipid bilayers with high affinity, so that, at least at 1 mM phospholipid, the amount of free Chaps is negligible; solubilization starts when about two surfactant molecules are incorporated per phospholipid molecule. Differential scanning calorimetry shows that incorporation of Chaps into saturated phosphatidylcholine bilayers, even at concentrations below those producing solubilization, causes a decrease in the Tc gel-to-liquid crystalline main transition temperature of the phospholipid, and a decrease in the transition enthalpy; at the same time, a "shoulder" appears on the low-temperature side of the main endotherm. The ensemble of our data suggests that the behavior of Chaps toward phospholipid bilayers is intermediate between that of the natural bile derivatives and that of some well-known nonionic synthetic surfactants.[Abstract] [Full Text] [Related] [New Search]