These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Impact of Decaffeinated Green Tea Extract on Fat Oxidation, Body Composition and Cardio-Metabolic Health in Overweight, Recreationally Active Individuals. Author: Roberts JD, Willmott AGB, Beasley L, Boal M, Davies R, Martin L, Chichger H, Gautam L, Del Coso J. Journal: Nutrients; 2021 Feb 26; 13(3):. PubMed ID: 33652910. Abstract: This study investigated the effect of decaffeinated green tea extract (dGTE), with or without antioxidant nutrients, on fat oxidation, body composition and cardio-metabolic health measures in overweight individuals engaged in regular exercise. Twenty-seven participants (20 females, 7 males; body mass: 77.5 ± 10.5 kg; body mass index: 27.4 ± 3.0 kg·m2; peak oxygen uptake (O2peak): 30.2 ± 5.8 mL·kg-1·min-1) were randomly assigned, in a double-blinded manner, either: dGTE (400 mg·d-1 (-)-epigallocatechin-3-gallate (EGCG), n = 9); a novel dGTE+ (400 mg·d-1 EGCG, quercetin (50 mg·d-1) and α-lipoic acid (LA, 150 mg·d-1), n = 9); or placebo (PL, n = 9) for 8 weeks, whilst maintaining standardised, aerobic exercise. Fat oxidation ('FATMAX' and steady state exercise protocols), body composition, cardio-metabolic and blood measures (serum glucose, insulin, leptin, adiponectin, glycerol, free fatty acids, total cholesterol, high [HDL-c] and low-density lipoprotein cholesterol [LDL-c], triglycerides, liver enzymes and bilirubin) were assessed at baseline, week 4 and 8. Following 8 weeks of dGTE+, maximal fat oxidation (MFO) significantly improved from 154.4 ± 20.6 to 224.6 ± 23.2 mg·min-1 (p = 0.009), along with a 22.5% increase in the exercise intensity at which fat oxidation was deemed negligible (FATMIN; 67.6 ± 3.6%O2peak, p = 0.003). Steady state exercise substrate utilisation also improved for dGTE+ only, with respiratory exchange ratio reducing from 0.94 ± 0.01 at week 4, to 0.89 ± 0.01 at week 8 (p = 0.004). This corresponded with a significant increase in the contribution of fat to energy expenditure for dGTE+ from 21.0 ± 4.1% at week 4, to 34.6 ± 4.7% at week 8 (p = 0.006). LDL-c was also lower (normalised fold change of -0.09 ± 0.06) for dGTE+ by week 8 (p = 0.038). No other significant effects were found in any group. Eight weeks of dGTE+ improved MFO and substrate utilisation during exercise, and lowered LDL-c. However, body composition and cardio-metabolic markers in healthy, overweight individuals who maintained regular physical activity were largely unaffected by dGTE.[Abstract] [Full Text] [Related] [New Search]