These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of dietary linoleic acid and essential fatty acid deficiency on resting metabolism, nonshivering thermogenesis and brown adipose tissue in the rat. Author: Rafael J, Patzelt J, Elmadfa I. Journal: J Nutr; 1988 May; 118(5):627-32. PubMed ID: 3367242. Abstract: Rats were fed a diet either deficient (0.05%) in essential fatty acids (EFA), or providing 4% (control) and 10% (surplus) of the total energy intake in the form of linoleic acid. All diets were isoenergetic and provided 13.9% of the energy as fat. The rats were kept at 29 or 5 degrees C. Growth and food intake of rats fed linoleic acid surplus at either temperature for 10 wk were not different from that of controls; basal metabolism, norepinephrine-induced nonshivering thermogenesis (NST) and thermogenic variables in the brown adipose tissue (amount of mitochondria and mitochondrial uncoupling protein) also were not different. The effects of EFA deficiency were drastically enhanced in the cold: After 10 wk of consuming a diet low in EFA at 5 degrees C, the body weight of rats was 75% of that of controls (87% at 29 degrees C); the food intake was 135% of controls at 5 degrees C (120% at 29 degrees C). The resting respiration in deficient rats was 125% of controls at 5 degrees C (110% at 29 degrees C); body temperatures as low as 35.1 degrees C were measured in deficient rats after 3 wk at 5 degrees C; the cold tolerance of the rats was significantly diminished (30% died within 3 wk at 5 degrees C), thus emphasizing the essential role of dietary EFA during cold stress. Norepinephrine-induced NST and the thermogenic parameters in brown fat were not influenced by EFA deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]