These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sensitivity of frequency-domain optical measurements to brain hemodynamics: simulations and human study of cerebral blood flow during hypercapnia. Author: Pham T, Blaney G, Sassaroli A, Fernandez C, Fantini S. Journal: Biomed Opt Express; 2021 Feb 01; 12(2):766-789. PubMed ID: 33680541. Abstract: This study characterizes the sensitivity of noninvasive measurements of cerebral blood flow (CBF) by using frequency-domain near-infrared spectroscopy (FD-NIRS) and coherent hemodynamics spectroscopy (CHS). We considered six FD-NIRS methods: single-distance intensity and phase (SDI and SDϕ), single-slope intensity and phase (SSI and SSϕ), and dual-slope intensity and phase (DSI and DSϕ). Cerebrovascular reactivity (CVR) was obtained from the relative change in measured CBF during a step hypercapnic challenge. Greater measured values of CVR are assigned to a greater sensitivity to cerebral hemodynamics. In a first experiment with eight subjects, CVRSDϕ was greater than CVRSDI (p < 0.01), whereas CVRDSI and CVRDSϕ showed no significant difference (p > 0.5). In a second experiment with four subjects, a 5 mm scattering layer was added between the optical probe and the scalp tissue to increase the extracerebral layer thickness (Lec ), which caused CVRDSϕ to become significantly greater than CVRDSI (p < 0.05). CVRSS measurements yielded similar results as CVRDS measurements but with a greater variability, possibly resulting from instrumental artifacts in SS measurements. Theoretical simulations with two-layered media confirmed that, if the top (extracerebral) layer is more scattering than the bottom (brain) layer, the relative values of CVRDSI and CVRDSϕ depend on Lec . Specifically, the sensitivity to the brain is greater for DSI than DSϕ for a thin extracerebral layer (Lec < 13 mm), whereas it is greater for DSϕ than DSI for a thicker extracerebral layer.[Abstract] [Full Text] [Related] [New Search]