These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3D CT evaluation of femoral and tibial tunnels in anatomic double bundle anterior cruciate ligament reconstruction.
    Author: Tank S, Dutt S, Sehrawat R, Kumar V, Sabat D.
    Journal: J Clin Orthop Trauma; 2021 Apr; 15():22-26. PubMed ID: 33680823.
    Abstract:
    BACKGROUND: An anatomical double bundle ACL reconstruction replicates the anatomy of native ACL as the tunnels are made to simulate the anatomy of ACL with AM and PL bundle foot prints. The goal of anatomic ACL reconstruction is to tailor the procedure to each patient's anatomic, biomechanical and functional demands to provide the best possible outcome. The shift from single bundle to double bundle technique and also from transtibial to transportal method has been to provide near anatomic tunnel positions. PURPOSE: To determine the position of femoral and tibial tunnels prepared by double bundle ACL reconstruction using three dimensional Computed tomography. STUDY DESIGN: A prospective case series involving forty patients with ACL tear who underwent transportal double bundle ACL reconstruction. METHOD: Computed tomography scans were performed on forty knees that had undergone double bundle anterior cruciate ligament reconstruction. Three-dimensional computed tomography reconstruction models of the knee joint were prepared and aligned into an anatomical coordinate axis system for femur and tibia respectively. Tibial tunnel centres were measured in the anterior-to-posterior and medial-to-lateral directions on the top view of tibial plateau and femoral tunnel centres were measured in posterior to anterior and proximal-to-distal directions with anatomic coordinate axis method. These measurements were compared with published reference data. RESULTS: Analysing the Femoral tunnel, the mean posterior-to-anterior distances for anteromedial and posterolateral tunnel centre position were 46.8% ± 7.4% and 34.5% ± 5.0% of the posterior-to-anterior height of the medial wall and the mean proximal-to-distal distances for the anteromedial and posterolateral tunnel centre position were 24.1% ± 7.1% and 61.6% ± 4.8%. On the tibial side, the mean anterior-to-posterior distances for the anteromedial and posterolateral tunnel centre position were 28.8% ± 4.3% and 46.2% ± 3.6% of the anterior-to posterior depth of the tibia measured from the anterior border and the mean medial-to-lateral distances for the anteromedial and posterolateral tunnel centre position were 46.5% ± 2.9% and 50.6% ± 2.8% of the medial-to-lateral width of the tibia measured from the medial border. There is high Inter-observer and Intra-observer reliability (Intra-class correlation coefficient). DISCUSSION AND CONCLUSION: Femoral AM tunnel was positioned significantly anterior and nearly proximal whereas the femoral PL tunnel was positioned significantly anterior and nearly distal with respect to the anatomic site. Location of tibial AM tunnel was nearly posterior and nearly medial whereas the location of tibial PL tunnel was very similar to the anatomic site Evaluation of location of tunnels through the anatomic co-ordinate axes method on 3D CT models is a reliable and reproducible method. This method would help the surgeons to aim for anatomic placement of the tunnels. It also shows that there is scope for improvement of femoral tunnel in double bundle ACL reconstruction through transportal technique.
    [Abstract] [Full Text] [Related] [New Search]