These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Egg White Protein Carrier-Assisted Development of Solid Dispersion for Improved Aqueous Solubility and Permeability of Poorly Water Soluble Hydrochlorothiazide.
    Author: Telange DR, Jain SP, Pethe AM, Kharkar PS.
    Journal: AAPS PharmSciTech; 2021 Mar 08; 22(3):94. PubMed ID: 33683493.
    Abstract:
    Hydrochlorothiazide (HTZ) is a first-line drug used in the treatment of hypertension suffered from low oral bioavailability due to poor aqueous solubility and permeability. Hence, lyophilized egg white protein-based solid dispersion (HTZ-EWP SD) was developed to explore its feasibility as a solid dispersion carrier for enhanced aqueous solubility and permeability of HTZ. The HTZ-EWP SD was prepared using the kneading method. HTZ-EWP SD was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transforms infrared spectroscopy (FT-IR), powder X-ray diffractometer (PXRD), solubility, in vitro dissolution, and ex vivo permeation studies. The physico-chemical evaluation suggested the formation of the solid dispersion. Optimized HTZ-EWP SD4 drastically enhanced (~32-fold) aqueous solubility (~16.12 ± 0.08 mg/mL) over to pure HTZ (~ 0.51 ± 0.03 mg/mL). The dissolution study in phosphate buffer media (pH 6.8) revealed that HTZ-EWP SD4 significantly enhanced the release rate of HTZ (~ 87 %) over to HTZ (~ 25 %). The permeation rate of HTZ from optimized HTZ-EWP SD4 was enhanced significantly (~ 84 %) compared to pure HTZ (~ 24 %). Optimized HTZ-EWP-SD4 enhanced the rate of HTZ dissolution (~ 86 %) in FeSSIF (fed state simulated intestinal fluid), compared to a low dissolution rate (~ 72 %) in FaSSIF (fasted state simulated intestinal fluid) state after 2-h study. Obtained results conclude that lyophilized egg white protein can be utilized as an alternative solid dispersion carrier for enhancing the solubility and permeability of HTZ.
    [Abstract] [Full Text] [Related] [New Search]