These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Methacrylated pullulan/polyethylene (glycol) diacrylate composite hydrogel for cartilage tissue engineering. Author: Qin X, He R, Chen H, Fu D, Peng Y, Meng S, Chen C, Yang L. Journal: J Biomater Sci Polym Ed; 2021 Jun; 32(8):1057-1071. PubMed ID: 33685369. Abstract: Pullulan hydrogels are widely used in tissue engineering and drug delivery. However, these hydrogels do not meet the requirements of articular cartilage repair because of their fast degradation rate and poor mechanical strength. Herein, we fabricated a hybrid hydrogel system by combining pullulan with synthetic polymers polyethylene (glycol) diacrylate (PEGDA). In this study, pullulan was modified with methacrylic anhydride (MA) to obtain photo-crosslinkable methacrylated pullulan (PulMA). Moreover, the lithium phenyl(2,4,6-trimethylbenzoyl)phosphinate (LAP) was used as a water-soluble UV photoinitiator to form the PulMA/PEGDA hydrogel by photopolymerization strategy. Compared with the pure PulMA hydrogel, the increase of PEGDA concentration led to a slower degradation rate and an increase of residual mass from 63.9% to 86.8%. There was about 8-fold increase in storage modulus (G') (reach to 16.0 × 103 Pa) and 13-fold increase in compressive modulus (reach to 1.17 ± 0.17 MPa) with increasing the concentration of PEGDA to 15% (w/v) in the hydrogel. In cell culture in vitro, the rabbit's mesenchymal stem cells (MSCs) encapsulated in the PulMA/PEGDA hydrogel could adhere and proliferate, indicating that the PulMA/PEGDA hydrogel had a good biocompatibility. Furthermore, the hydrogels supported glycosaminoglycan (GAG) synthesis, and chondrogenic phenotype of MSCs with TGF-β3-containing chondrogenic medium. This study demonstrated that the photo-crosslinking PulMA/PEGDA hydrogels, with good mechanical properties and slow degradation rate are promising scaffolds for cartilage repair and regeneration.[Abstract] [Full Text] [Related] [New Search]