These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Surface-enhanced shifted excitation Raman difference spectroscopy for trace detection of fentanyl in beverages. Author: Ye J, Wang S, Zhang Y, Li B, Lu M, Qi X, Wei H, Li Y, Zou M. Journal: Appl Opt; 2021 Mar 10; 60(8):2354-2361. PubMed ID: 33690335. Abstract: In recognition of the misuse risks of fentanyl, there is an urgent need to develop a useful and rapid analytical method to detect and monitor the opioid drug. The surface-enhanced shifted excitation Raman difference spectroscopy (SE-SERDS) method has been demonstrated to suppress background interference and enhance Raman signals. In this study, the SE-SERDS method was used for trace detection of fentanyl in beverages. To prepare the simulated illegal drug-beverages, fentanyls were dissolved into distilled water or Mizone as a series of test samples. Based on our previous work, the surface-enhanced Raman spectroscopy detection was performed on the beverages containing fentanyl by the prepared AgNPs and the SE-SERDS spectra of test samples were collected by the dual-wavelength rapid excitation Raman difference spectroscopy system. In addition, the quantitative relationship between fentanyl concentrations and the Raman peaks was constructed by the Langmuir equation. The experimental results show that the limits of quantitation for fentanyl in distilled water and Mizone were 10 ng/mL and 200 ng/mL, respectively; the correlation coefficients for the nonlinear regression were as high as 0.9802 and 0.9794, respectively; and the relative standard deviation was less than 15%. Hence, the SE-SERDS method will be a promising method for the trace analyses of food safety and forensics.[Abstract] [Full Text] [Related] [New Search]