These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biologically active phthalocyanine metal complexes: Preparation, evaluation of α-glycosidase and anticholinesterase enzyme inhibition activities, and molecular docking studies. Author: Güzel E, Koçyiğit ÜM, Taslimi P, Erkan S, Taskin OS. Journal: J Biochem Mol Toxicol; 2021 Jun; 35(6):1-9. PubMed ID: 33704864. Abstract: In this study, preparation, as well as investigation of α-glycosidase and cholinesterase (ChE) enzyme inhibition activities of furan-2-ylmethoxy-substituted compounds 1-7, are reported. Peripherally, tetra-substituted copper and manganese phthalocyanines (5 and 6) were synthesized for the first time. The substitution of furan-2-ylmethoxy groups provides remarkable solubility to the complex and redshift of the phthalocyanines Q-band. Besides, the inhibitory effects of these compounds on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly) enzymes have been investigated. The AChE was inhibited by these compounds (1-7) in low micromolar levels, and K i values were recorded between 11.17 ± 1.03 and 83.28 ± 11.08 µM. Against the BChE, the compounds demonstrated K i values from 7.55 ± 0.98 to 81.35 ± 12.80 µM. Also, these compounds (1-7) effectively inhibited α-glycosidase, with K i values in the range of 744.87 ± 67.33 to 1094.38 ± 88.91 µM. For α-glycosidase, the most effective K i values of phthalocyanines 3 and 6 were with K i values of 744.87 ± 67.33 and 880.36 ± 56.77 µM, respectively. Moreover, the studied metal complexes were docked with target proteins PDB ID: 4PQE, 1P0I, and 3WY1. Pharmacokinetic parameters and secondary chemical interactions that play an active role in interaction were predicted with docking simulation results. Overall, furan-2-ylmethoxy-substituted phthalocyanines can be considered as potential agents for the treatment of Alzheimer's diseases and diabetes mellitus.[Abstract] [Full Text] [Related] [New Search]