These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A predominant isoform of fructokinase, HbFRK2, is involved in Hevea brasiliensis (para rubber tree) latex yield and regeneration. Author: Fang P, Long X, Fang Y, Chen H, Yu M. Journal: Plant Physiol Biochem; 2021 May; 162():211-220. PubMed ID: 33706182. Abstract: Fructokinase (FRK) mediates fructose phosphorylation to regulate the carbon flow and its assignment to sink tissues. Out of five HbFRKs in the genome of the rubber tree, three (HbFRK1-3) that were highly expressed in latex (cytoplasm of laticifers) were isolated and examined. According to phylogenetic analysis and intracellular location experiment, both HbFRK2 and HbFRK3 were highly possible to be expressed in cytosol, while HbFRK1 was in plastid. As the predominant isoform in laticifers, HbFRK2 had the highest transcripts, followed by HbFRK3 and HbFRK1. In enzymatic function, HbFRK2 also showed the highest affinity for fructose. To examine the roles of FRKs in latex yield and regeneration, changes in HbFRKs were examined when latex outflow from the trees were increased through two experimental interventions. In the first approach, tapping was initiated on previously untapped trees, resulting in latex yield increasing with consecutive tapping at the initial stage before it stabilized. In the second approach, latex yield from trees that were already in regular tapping was stimulated by treatment with the ethylene-based yield stimulant, ethephon. Using either method to induce an increase in latex yield, the abundance of HbFRK2 and HbFRK3 in transcripts, was increased. This development, which was especially marked in HbFRK2, may reflect a strengthening of glycolysis to meet the carbon flux and energy demands for increased rubber biosynthesis to replace rubber lost in the increased latex yield. Our results, therefore, suggest that HbFRK2 plays a critical role in fructose catabolism to facilitate rubber regeneration in the commercially exploited rubber tree.[Abstract] [Full Text] [Related] [New Search]