These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic parameters for uniformity of harvest weight in Pacific white shrimp (Litopenaeus vannamei).
    Author: García-Ballesteros S, Villanueva B, Fernández J, Gutiérrez JP, Cervantes I.
    Journal: Genet Sel Evol; 2021 Mar 12; 53(1):26. PubMed ID: 33711925.
    Abstract:
    BACKGROUND: Uniformity of body weight is a trait of great economic importance in the production of white shrimp (Litopenaeus vannamei). A necessary condition to improve this trait through selective breeding is the existence of genetic variability for the environmental variance of body weight. Although several studies have reported such variability in other aquaculture species, to our knowledge, no estimates are available for shrimp. Our aim in this study was to estimate the genetic variance for weight uniformity in a farmed population of shrimp to determine the potential of including this trait in the selection program. We also estimated the genetic correlation of weight uniformity between two environments (selection nucleus and commercial population). METHODS: The database contained phenotypic records for body weight on 51,346 individuals from the selection nucleus and 38,297 individuals from the commercial population. A double hierarchical generalized linear model was used to analyse weight uniformity in the two environments. Fixed effects included sex and year for the nucleus data and sex and year-pond combination for the commercial data. Environmental and additive genetic effects were included as random effects. RESULTS: The estimated genetic variance for weight uniformity was greater than 0 (0.06 ± 0.01) in both the nucleus and commercial populations and the genetic coefficient of variation for the residual variance was 0.25 ± 0.01. The genetic correlation between weight and weight uniformity was close to zero in both environments. The estimate of the genetic correlation of weight uniformity between the two environments (selection nucleus and commercial population) was 0.64 ± 0.06. CONCLUSIONS: The existence of genetic variance for weight uniformity suggests that genetic improvement of this trait is possible. Selection for weight uniformity should not decrease weight, given the near zero genetic correlation between these two traits. The strong genetic correlation of weight uniformity between the two environments indicates that response to selection for uniformity in the nucleus will be at least partially transmitted to the commercial population if this trait is included in the breeding goal.
    [Abstract] [Full Text] [Related] [New Search]