These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two-step strategy for constructing hierarchical pore structured chitosan-hydroxyapatite composite scaffolds for bone tissue engineering. Author: Li TT, Zhang Y, Ren HT, Peng HK, Lou CW, Lin JH. Journal: Carbohydr Polym; 2021 May 15; 260():117765. PubMed ID: 33712123. Abstract: Chitosan (CS) combined with hydroxyapatite (HA) was injected into a composite braid, and a hierarchical pore structure scaffold was obtained by freeze drying and cold atmospheric plasma (CAP) technology. The CS/HA/braid scaffold with hierarchical pore structure was analyzed and characterized by scanning electronic microscopy, Fourier transform infrared spectroscopy, true color confocal microscopy, improved liquid replacement method, and phosphate buffer solution immersion. The mechanical properties and degradation ability of the scaffold were evaluated through compression test and degradation test. Results showed that HA addition endowed the core of the scaffold with macroscopic pore sizes of 80-180 μm, and CAP treatment endowed the shell of the scaffold with microscopic pore sizes ≤10 μm. All scaffolds exhibited high porosity and swelling rates of ≥80 % and ≥300 %, respectively. The scaffold with a hierarchical pore structure had good mechanical properties and twice the degradation rate. In addition, the treated scaffold precipitated intact spherical HA crystals. Under the synergistic effect of HA and CAP treatment, scaffolds achieved 277.6 % cell viability compared with pure CS scaffold. Overall, this method was feasible for preparing bone scaffolds with hierarchical pore structure for potential bone tissue engineering.[Abstract] [Full Text] [Related] [New Search]