These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cytotoxins alpha-sarcin and ricin retain their specificity when tested on a synthetic oligoribonucleotide (35-mer) that mimics a region of 28 S ribosomal ribonucleic acid. Author: Endo Y, Chan YL, Lin A, Tsurugi K, Wool IG. Journal: J Biol Chem; 1988 Jun 15; 263(17):7917-20. PubMed ID: 3372511. Abstract: An oligoribonucleotide (35-mer) that mimics the alpha-sarcin and the ricin region of eukaryotic 28 S rRNA was transcribed in vitro from a synthetic template with T7 RNA polymerase and was used to test whether the specificity of the hydrolysis by the toxins was retained. alpha-Sarcin, at a low concentration, cleaved a single phosphodiester bond on the 3' side of a guanosine residue in the synthetic oligomer that corresponds to G-4325 in 28 S rRNA, the site of action of the toxin in intact ribosomes. At a high concentration of alpha-sarcin, the substrate (35-mer) was hydrolyzed after each of its purines. alpha-Sarcin was without an effect on a synthetic RNA (20-mer) that reproduces the near universal sequence of nucleotides in the loop, but lacks the stem, of the toxin's domain. Thus, the specificity of the attack of alpha-sarcin on a precise region of 28 S rRNA appears to be contingent on the sequence of the nucleotides and the structure of the domain. Ricin depurinated a nucleotide in the synthetic oligomer (35-mer), and in the presence of aniline the phosphoribose backbone was cleaved at a position that conforms to A-4324 in 28 S rRNA, the site of action of the toxin in vivo.[Abstract] [Full Text] [Related] [New Search]