These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: β-Hydroxybutyrate inhibits cardiac microvascular collagen 4 accumulation by attenuating oxidative stress in streptozotocin-induced diabetic rats and high glucose treated cells.
    Author: Qi H, Gu L, Xu D, Liu K, Zhou M, Wang Y, Wang X, Li Y, Qi J.
    Journal: Eur J Pharmacol; 2021 May 15; 899():174012. PubMed ID: 33727057.
    Abstract:
    Accumulation of collagen 4 (COL4) and thickened basement membrane are features of diabetic cardiac microvascular fibrosis that may be induced by oxidative stress. The ketone body β-hydroxybutyrate exhibits various cardiovascular protective effects, however its mechanism remains to be clarified. In the current study, the effects of β-hydroxybutyrate on cardiac microvascular fibrosis and COL4 accumulation were evaluated in streptozotocin-induced diabetic rats and in high glucose (HG) treated human cardiac microvascular endothelial cells (HCMECs). Generations of inducible nitric oxide synthase (iNOS) and copper-zinc superoxide dismutase (Cu/Zn-SOD), and the amount of nitrotyrosine (NT) were measured in vivo and in vitro. Ten weeks of β-hydroxybutyrate treatment (160, 200 and 240 mg/kg/d) attenuated cardiac microvascular fibrosis and inhibited cardiac COL4 generation and microvascular distribution in diabetic rats. Furthermore, β-hydroxybutyrate promoted cardiac Cu/Zn-SOD generation and reduced NT content, without reducing iNOS generation in diabetic rats. In HCMECs, stimulation with HG induced excess generation of COL4 via peroxynitrite. β-Hydroxybutyrate treatment (2, 4, 6 mM) attenuated HG-stimulated COL4 accumulation in a concentration-dependent manner. Similarly, 4 mM β-hydroxybutyrate promoted Cu/Zn-SOD generation and reduced NT content, without affecting excess iNOS generation in HG-stimulated HCMECs. In conclusion, this study showed that β-hydroxybutyrate promoted Cu/Zn-SOD generation, reduced peroxynitrite and inhibited cardiac microvascular COL4 accumulation in diabetes.
    [Abstract] [Full Text] [Related] [New Search]