These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oscillatory Entrainment of the Frequency-following Response in Auditory Cortical and Subcortical Structures.
    Author: Coffey EBJ, Arseneau-Bruneau I, Zhang X, Baillet S, Zatorre RJ.
    Journal: J Neurosci; 2021 May 05; 41(18):4073-4087. PubMed ID: 33731448.
    Abstract:
    There is much debate about the existence and function of neural oscillatory mechanisms in the auditory system. The frequency-following response (FFR) is an index of neural periodicity encoding that can provide a vehicle to study entrainment in frequency ranges relevant to speech and music processing. Criteria for entrainment include the presence of poststimulus oscillations and phase alignment between stimulus and endogenous activity. To test the hypothesis of entrainment, in experiment 1 we collected FFR data for a repeated syllable using magnetoencephalography (MEG) and electroencephalography in 20 male and female human adults. We observed significant oscillatory activity after stimulus offset in auditory cortex and subcortical auditory nuclei, consistent with entrainment. In these structures, the FFR fundamental frequency converged from a lower value over 100 ms to the stimulus frequency, consistent with phase alignment, and diverged to a lower value after offset, consistent with relaxation to a preferred frequency. In experiment 2, we tested how transitions between stimulus frequencies affected the MEG FFR to a train of tone pairs in 30 people. We found that the FFR was affected by the frequency of the preceding tone for up to 40 ms at subcortical levels, and even longer durations at cortical levels. Our results suggest that oscillatory entrainment may be an integral part of periodic sound representation throughout the auditory neuraxis. The functional role of this mechanism is unknown, but it could serve as a fine-scale temporal predictor for frequency information, enhancing stability and reducing susceptibility to degradation that could be useful in real-life noisy environments.SIGNIFICANCE STATEMENT Neural oscillations are proposed to be a ubiquitous aspect of neural function, but their contribution to auditory encoding is not clear, particularly at higher frequencies associated with pitch encoding. In a magnetoencephalography experiment, we found converging evidence that the frequency-following response has an oscillatory component according to established criteria: poststimulus resonance, progressive entrainment of the neural frequency to the stimulus frequency, and relaxation toward the original state on stimulus offset. In a second experiment, we found that the frequency and amplitude of the frequency-following response to tones are affected by preceding stimuli. These findings support the contribution of intrinsic oscillations to the encoding of sound, and raise new questions about their functional roles, possibly including stabilization and low-level predictive coding.
    [Abstract] [Full Text] [Related] [New Search]