These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assessment of the production of Bacillus cereus protease and its effect on the quality of ultra-high temperature-sterilized whole milk. Author: Yang X, Wang Z, Zhang C, Wang L, Pang L, Zhang D, Man C, Jiang Y. Journal: J Dairy Sci; 2021 Jun; 104(6):6577-6587. PubMed ID: 33741157. Abstract: Bacillus cereus is one of the most important spoilage microorganisms in milk. The heat-resistant protease produced is the main factor that causes rotten, bitter off-flavors and age gelation during the shelf-life of milk. In this study, 55 strains of B. cereus were evaluated, of which 25 strains with protease production ability were used to investigate proteolytic activity and protease heat resistance. The results showed that B. cereus C58 had strong protease activity, and its protease also had the highest thermal stability after heat treatment of 70°C (30 min) and 100°C (10 min). The protease was identified as protease HhoA, with a molecular mass of 43.907 kDa. The protease activity of B. cereus C58 in UHT-sterilized whole milk (UHT milk) showed an increase with the growth of bacteria, especially during the logarithmic growth phase. In addition, the UHT milk incubated with protease from B. cereus C58 at 28°C (24 h) and 10°C (6 d) were used to evaluate the effects of protease on the quality of UHT milk, including protein hydrolysis and physical stability. The results showed that the hydrolysis of casein was κ-CN, β-CN, and αS-CN successively, whereas whey protein was not hydrolyzed. The degree of protein hydrolysis, viscosity, and particle size of the UHT milk increased. The changes in protein and fat contents indicated that fat globules floated at 28°C and settled at 10°C, respectively. Meanwhile, confocal laser scanning microscopy images revealed that the protease caused the stability of UHT milk to decrease, thus forming age gelation.[Abstract] [Full Text] [Related] [New Search]