These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Author: Lu X, Hou E, Guo J, Gilliam FS, Li J, Tang S, Kuang Y. Journal: Glob Chang Biol; 2021 Jun; 27(12):2780-2792. PubMed ID: 33742519. Abstract: China is experiencing a high level of atmospheric nitrogen (N) deposition, which greatly affects the soil carbon (C) dynamics in terrestrial ecosystems. Soil aggregation contributes to the stability of soil structure and to soil C sequestration. Although many studies have reported the effects of N enrichment on bulk soil C dynamics, the underlying mechanisms explaining how soil aggregates respond to N enrichment remain unclear. Here, we used a meta-analysis of data from 76N manipulation experiments in terrestrial ecosystems in China to assess the effects of N enrichment on soil aggregation and its sequestration of C. On average, N enrichment significantly increased the mean weight diameter of soil aggregates by 10%. The proportion of macroaggregates and silt-clay fraction were significantly increased (6%) and decreased (9%) by N enrichment, respectively. A greater response of macroaggregate C (+15%) than of bulk soil C (+5%) to N enrichment was detected across all ecosystems. However, N enrichment had minor effects on microaggregate C and silt-clay C. The magnitude of N enrichment effect on soil aggregation varied with ecosystem type and fertilization regime. Additionally, soil pH declined consistently and was correlated with soil aggregate C. Overall, our meta-analysis suggests that N enrichment promotes particulate organic C accumulation via increasing macroaggregate C and acidifying soils. In contrast, increases in soil aggregation could inhibit microbially mediated breakdown of soil organic matter, causing minimal change in mineral-associated organic C. Our findings highlight that atmospheric N deposition may enhance the formation of soil aggregates and their sequestration of C in terrestrial ecosystems in China.[Abstract] [Full Text] [Related] [New Search]